Veröffentlichungen Oberflächenkatalyse
Publications
[135] Adsorption of CO on a-Al2O3(0001): A Combined Experimental and Computational Study
S. Gojare, S. Chen, J. Chen, Z. Yu, J. Vazquez Quesada, P. N. Pleßow, K. Fink, Y. Wang
ChemPhysChem 2024, invited article
[134] Highly Active Oxidation Catalysts through Confining Pd Clusters on CeO2 Nano-Islands
D. Gashnikova, F. Maurer, E. Sauter, S. Bernart, J. Jelic, P. Dolcet, C. B. Maliakkal, Y. Wang, C. Wöll, F. Studt, C. Kübel, M. Casapu, J.-D. Grunwaldt
Angew. Chem. Int. Ed. 2024, 63, accepted
[133] Atomically smooth CeO2(001) films on YSZ(001)
J.-C. Schober, E. E. Beck, C. Wöll, Y. Wang, H. Noei, Y. Eggeler, A. Stierle, et al.
ChemRxiv (preprint) 2024.
http://doi.org/10.26434/chemrxiv-2024-r58cx
[132a] Structure and Chemical Reactivity of Y-Stabilized ZrO2 Surfaces: Importance for the Water-Gas Shift Reaction
S. Chen. P. N. Pleßow, Z. Yu, E. Sauter, L. Caulfield, A. Nefedov, F. Studt, Y. Wang, C. Wöll
Angew. Chem. Int. Ed. 2024, 63, e202404775
https://doi.org/10.1002/anie.202404775
[132b] Struktur und chemische Reaktivität von Yttrium-stabilisierten ZrO2-Oberflächen: Zur Bedeutung für die Wassergas-Shift-Reaktion
S. Chen. P. N. Pleßow, Z. Yu, E. Sauter, L. Caulfield, A. Nefedov, F. Studt, Y. Wang, C. Wöll
Angew. Chem. 2024, 63, e202404775
https://doi.org/10.1002/ange.202404775
[131] Comment on “Surface Characterization of Cerium Oxide Catalysts Using deep
learning with infrared spectroscopy of CO”
M. V. Ganduglia-Pirovano, A. Martínez-Arias, S. Chen, Y. Wang,
P. G. Lustemberg
Mater. Today Sustain. 2024, 26, 100783
https://doi.org/10.1016/j.mtsust.2024.100783
[130] Polarization-dependent Effects in Vibrational Absorption Spectra of 2D Finite-size Adsorbate Islands on Dielectric Substrates
B. Zerulla, M. Krstić, S. Chen, Z. Yu, D. Beutel, C. Holzer, M. Nyman, T. G. Mayerhöfer, A. Nefedov, Y. Wang, C. Wöll, C. Rockstuhl
Phys. Chem. Chem. Phys. 2024, 26, 13683-13693, https://doi.org/10.1039/D4CP00860J
[129] Ultrastrong Electron-phonon Coupling in Uranium-organic Frameworks Leading to Inverse Luminescence Temperature Dependence
D.-H. Chen, N. Vankova, G. Jha, X. Yu, Y. Wang, L. Lin, F. Kirschhöfer, R. Greifenstein, E. Redel, T. Heine, C. Wöll
Angew. Chem. Int. Ed. 2024, 63, e202318559
https://doi.org/10.1002/anie.202318559
[128] Structural Evolution of Water on Oxide Single Crystal Surfaces
Y. Wang, C. Wöll
Encyclopedia of Solid-Liquid Interfaces, K. Wandelt, G. Bussetti (eds.), Elsevier, 2024, 171-179, https://doi.org/10.1021/acs.jpcc.3c03567
[127] Bridging the Pressure and Materials Gap in Heterogeneous Catalysis: A Combined UHV, In Situ, and Operando Study Using Infrared Spectroscopy
L. Caulfield, E. Sauter, H. Idriss, Y. Wang, C. Wöll
J. Phys. Chem. C 2023, 127, 14023-14029
https://doi.org/10.1021/acs.jpcc.3c03567
[126a] Metal-Organic Framework Thin Films as Ideal Matrices for Azide Photolysis in Vacuum
J. Song, X. Yu, A. Nefedov, P. G. Weidler, S. Grosjean, S. Bräse, Y. Wang, C. Wöll
Angew. Chem. Int. Ed. 62, e202306155, https://doi.org/10.1002/anie.202306155
[126b] Dünne Schichten metallorganischer Gerüstverbindungen als ideale Matrizes für die Azid-Photolyse im Vakuum
J. Song, X. Yu, A. Nefedov, P. G. Weidler, S. Grosjean, S. Bräse, Y. Wang, C. Wöll
Angew. Chem. Int. Ed. 135, e202306155, https://doi.org/10.1002/ange.202306155
[125] Vibrational Frequencies of CO Bound to All Three Low-index Cerium Oxide Surfaces: A Consistent Theoretical Description of Vacancy-induced Changes Using Density Functional Theory
P. G. Lustemberg, C. Yang, Y. Wang, C. Wöll, M. V, Ganduglia-Pirovano
J. Chem. Phys. 2023, 159, 034704, https://doi.org/10.1063/5.0153745
[124] N2O Adsorption and Photochemistry on Ceria Surfaces
C. Yang, Y. Cao, P. N. Plessow, J. Wang, A. Nefedov, S. Heissler, F. Studt, Y. Wang, H. Idriss, T. G. Mayerhöfer, C. Wöll
J. Phys. Chem. C 2022, 126, 2253-2263, https://doi.org/10.1021/acs.jpcc.1c10181
[123] Dynamic Structural Evolution of Ceria-Supported Pt Particles: A Thorough Spectroscopic Study
J. Wang, Sauter, A. Nefedov, S. Heißler, F. Maurer, M. Casapu, J.-D. Grunwaldt, Y. Wang, C. Wöll
J. Phys. Chem. C 2022, 126, 9051-9058, https://doi.org/10.1021/acs.jpcc.2c02420
[122] Tuning Crystal-phase of Bimetallic Single-nanoparticle for Catalytic Hydrogenation
S. Liu, Y. Li, X. Yu, S. Han, Y. Zhou, Y. Yang, H. Zhang, Z. Jiang, C. Zhu, W. Li, C. Wöll, Y. Wang, W. Shen
Nat. Commun. 2022, 13, 4559, https://doi.org/10.1038/s41467-022-32274-4
[121] Defects Engineering Simultaneously Enhances Activity and Recyclability of MOFs in Selective Gydrogenation of Biomass
W. Xu, Y. Zhang, J. Wang, Y. Xu, L. Bian, Q. Ju, Y. Wang, Z. Fang
Nat. Commun. 2022, 13, 2068, https://doi.org/10.1038/s41467-022-29736-0
[120] Defect-Engineered Metal−Organic Frameworks: A Thorough Characterization of Active Sites Using CO as a Probe Molecule
J. Wang, W. Wang, Z. Fan, S. Chen, A. Nefedov, S. Heißler, R. A. Fischer, C. Wöll, Y. Wang
J. Phys. Chem. C 2021, 125, 593-601, https://doi.org/10.1021/acs.jpcc.0c09738
[119] Direct Transformation of N-alkane into All-trans Conjugated Polyene via Cascade Dehydrogenation
Li X, Niu K, Zhang J, Yu X, Zhang H, Wang Y, Guo Q, Wang P, Li F, Hao Z, Xu C, Tang Y, Xu Z, Lu S, Liu P, Xue G, Wei Y, Chi L.
Natl. Sci. Rev. 2021, 24, 8(10): nwab093, https://doi.org/10.1093/nsr/nwab093
[118] CO Adsorption on the Calcite (10.4) Surface: A Combined Experimental and Theoretical Study
T. M. Hafshejani, W. Wang, J. Heggemann, A. Nefedov, S. Heissler, Y. Wang, P. Rahe, P. Thissen, C. Wöll,
Phys. Chem. Chem. Phys. 2021, 23, 7696-7702, https://doi.org/10.1039/D0CP02698K
[117] Shape-Selective Synthesis of Intermetallic Pd3Pb Nanocrystals and Enhanced Catalytic Properties in the Direct Synthesis of Hydrogen Peroxide
V. R. Naina, S. Wang, D. I. Sharapa, M. Zimmermann, M. Hähsler, L. Niebl-Eibenstein, J. Wang, C. Wöll, Y. Wang, S. K. Singh, F. Studt, S. Behrens
ACS Catal. 2021, 11, 2288–2301, https://doi.org/10.1021/acscatal.0c03561
[116] Vibrational Frequencies of Cerium-Oxide-Bound CO: A Challenge for Conventional DFT Methods
P. G. Lustemberg, P. N. Plessow, Y. Wang, C. Yang, A. Nefedov, F. Studt, C. Wöll, M. V. Ganduglia-Pirovano
Phys. Rev. Lett. 2020, 125, 256101, https://doi.org/10.1103/PhysRevLett.125.256101
[115] Thermal Defect Engineering of Precious Group Metal−Organic Frameworks: A Case Study on Ru/Rh-HKUST‑1 Analogues
W. R. Heinz, I. Agirrezabal-Telleria, R. Junk, J. Berger, J. Wang, D. I. Sharapa, M. Gil-Calvo, I. Luz, M. Soukri, F. Studt, Y. Wang, C. Wöll, H. Bunzen, M. Drees, R. A. Fischer
ACS Appl. Mater. 2020, 12, 40635-40647, https://doi.org/10.1021/acsami.0c10721
[114] Surface Refaceting Mechanism on Cubic Ceria
C. Yang, M. Capdevila-Cortada, C. Dong, Y. Zhou, J. Wang, X. Yu, A. Nefedov, S. Heißler, N. López, W. Shen, C. Wöll, Y. Wang
J. Phys. Chem. Lett. 2020, 11, 7925-7931, https://doi.org/10.1021/acs.jpclett.0c02409
[113] Probing the Water Stability Limits and Degradation Pathways of Metal–Organic Frameworks
M. E. A. Safy, Dr. M. Amin, R. R. Haikal, B. Elshazly, J. Wang, Y. Wang, C. Wöll, M. H. Alkordi
Chem. Eur. J. 2020, 26, 7109-7117, https://doi.org/10.1002/chem.202000207
[112a] Interplay of Electronic and Steric Effects to Yield Low-Temperature CO Oxidation at Metal Single Sites in Defect-Engineered HKUST-1
W. Wang, D. I. Sharapa, A. Chandresh, A. Nefedov, S. Heißler, L. Heinke, F. Studt, Y. Wang, C. Wöll
Angew. Chem. Int. Ed. 2020, 59, 10514-10518, https://doi.org/10.1002/anie.202000385
[112b] Zusammenwirken elektronischer und sterischer Effekte bei der Tieftemperatur-CO-Oxidation an Einzelatom-Metallzentren in defekt-manipuliertem HKUST-1
W. Wang, D. I. Sharapa, A. Chandresh, A. Nefedov, S. Heißler, L. Heinke, F. Studt, Y. Wang, C. Wöll
Angew. Chem. Int. Ed. 2020, 132, 10600-10604, https://doi.org/10.1002/ange.202000385
[111] Defect Engineering of Copper Paddlewheel-Based Metal−Organic Frameworks of Type NOTT-100: Implementing Truncated Linkers and Its Effect on Catalytic Properties
Z. Fan, J. Wang, W. Wang, S. Burger, Z. Wang, Y. Wang, C. Wöll, M. Cokoja, R. A. Fischer
ACS Appl. Mater. 2020, 21, 2553-2564, https://doi.org/10.1021/acsami.0c07249
[110] Chemical Reactivity of Supported ZnO Clusters: Undercoordinated Zinc and Oxygen Atoms as Active Sites
X. Yu, J. P. Roth, J. Wang, E. Sauter, A. Nefedov, S. Heißler, G. Pacchioni, Y. Wang, C Wöll
ChemPhysChem, 2020, 21, 2553-2564, https://doi.org/10.1002/cphc.202000747
[109] Tracking the Formation, Fate and Consequence for Catalytic Activity of Pt Single Sites on CeO2
F. Maurer, J. Jelic, J. J. Wang, A. Gänzler, P. Dolcet, C. Wöll, Y. Wang, F. Studt, M. Casapu, J.-D. Grunwaldt
Nature Catal. 2020, 3, 824-833, https://doi.org/10.1038/s41929-020-00508-7
[108] Structural Evolution of Water on ZnO (101-0): From Isolated Monomers via Anisotropic H-Bonded 2D and 3D Structures to Isotropic Multilayers
X. Yu, P. Schwarz, A. Nefedov, B. Meyer, Y. Wang, C. Wöll
Angew. Chem. Int. Ed. 2019, 58, 17751-17757, https://doi.org/10.1002/anie.201910191
[107] Regulating the Size and Spatial Distribution of Pd Nanoparticles Supported by the Defect Engineered Metal–Organic Framework HKUST-1 and Applied in the Aerobic Oxidation of Cinnamyl Alcohol
P. Guo, Q. Fu, C. Yildiz, Y.-T. Chen, K. Ollegott, C. Froese, W. Kleist, R. A. Fischer, Y. Wang, M. Muhler, B. Peng
Catal. Sci. Technol. 2019, 9, 3703-3710, https://doi.org/10.1039/c9cy00560a
[106] Proton-conduction Photomodulation in Spiropyran-functionalized MOFs with Large on–off Ratio
A. B. Kanj, A. Chandresh, A. Gerwien, S. Grosjean, S. Braese, Y. Wang, H. Dube, L. Heinke
Chem. Sci. 2019, 11, 1404-1410, https://doi.org/10.1039/c9sc04926F
[105] Structure of the Catalytically Active Copper-Ceria Interfacial Perimeter
A. Chen, X. Yu, S. Miao, Y. Li, S. Kuld, J. Sehested, J. Liu, T. Aoki, S. Hong, M. Farnesi Camellone, S. Fabris, J. Ning, C. Jin, C.W. Yang, A. Nefedov, C. Wöll, Y. Wang, W. Shen
Nat. Catal. 2019, 2, 334-341, https://doi.org/10.1038/s41929-019-0226-6
[104] Interaction of Water Molecules with the α-Fe2O3(0001) Surface: A Combined Experimental and Computational Study
L. Schöttner, R. Ovcharenko, A. Nefedov, E. Voloshina, Y. Wang, J. Sauer, C. Wöll
J. Phys. Chem. C 2019, 123, 8324-8335, https://doi.org/10.1021/acs.jpcc.8b08819
[103] Chemical Nature of Microfluidically Synthesized AuPd Nanoalloys Supported on TiO2
G. Tofighi, X. Yu, H. Lichtenberg, D. E. Doronkin, W. Wang, C. Wöll, Y. Wang, J. D. Grunwaldt
ACS Catal. 2019, 9, 5462-5473, https://doi.org/10.1021/acscatal.9b00161
[102] Highly efficient photocatalytic degradation of dyes by a novel copper-triazolate metal-organic framework
C.X. Liu, W.H. Zhang, N. Wang, P. Guo, M. Muhler, Y. Wang, S. Lin, Z. Chen, G. Yang
Chem. Eur. J. 2018, 24, 16804-16813, https://doi.org/10.1002/chem.201803306
[101] CuPd Mixed-Metal HKUST‑1 as a Catalyst for Aerobic Alcohol Oxidation
P. Guo, C. Froese, Q. Fu, Y. T. Chen, B. Peng, W. Kleist, R. A. Fischer, M. Muhler, Y. Wang
J. Phys. Chem. C 2018, 122, 21433-21440, https://doi.org/10.1021/acs.jpcc.8b05882
[100] Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks
Y. Wang, C. Wöll
Catal. Lett. 2018, 148, 2201-2222, https://doi.org/10.1007/s10562-018-2432-2
[99] Adsorption of Acetone on Rutile TiO2: A DFT and FTIRS Study
T. Würger, W. Heckel, K. Sellschopp, S. Müller, A. Stierle, Y. Wang, H. Noei,
G. Feldbauer
J. Phys. Chem. C. 2018, 122, 19481-19490, https://doi.org/10.1021/acs.jpcc.8b04222
[98] Infrared Reflection−Absorption Spectroscopy and Density Functional Theory Investigations of Ultrathin ZnO Films Formed on Ag (111)
A. Mie, X. Yu, M. Kick, Y. Wang, C. Wöll, K. Reuter
J. Phys. Chem. C. 2018, 122, 4963-4971, https://doi.org/10.1021/acs.jpcc.8b00158
[97a] O2 Activation on Ceria Catalysts – The Importance of Substrate Crystallographic Orientation
C. W. Yang, X. Yu, S. Heißler, P. G. Weidler, A. Nefedov, Y. Wang, C. Wöll, T. Kropp, J. Paier, J. Sauer
Angew. Chem. Int. Ed. 2017, 56, 16399-16404, https://doi.org/10.1002/anie.201709199
[97b] O2-Aktivierung an Cerdioxid-Katalysatoren – Zur Bedeutung der kristallographischen Orientierung des Substrats
C. W. Yang, X. Yu, S. Heißler, P. G. Weidler, A. Nefedov, Y. Wang, C. Wöll, T. Kropp, J. Paier, J. Sauer
Angew. Chem. 2017, 129, 16618-16623, https://doi.org/10.1002/ange.201709199
[96a] Rendering Photoreactivity to Ceria: The Role of Defects
C. W. Yang, X. Yu, P. N. Pleßow, S. Heissler, P- G. Weidler, A. Nefedov, F. Studt, Y. Wang, C. Wöll
Angew. Chem. Int. Ed. 2017, 56, 14301-14305, https://doi.org/10.1002/anie.201707965
[96b] Photoaktivierung von Cerdioxid: Die Rolle von Defekten
C. W. Yang, X. Yu, P. N. Pleßow, S. Heissler, P- G. Weidler, A. Nefedov, F. Studt, Y. Wang, C. Wöll
Angew. Chem. 2017, 129, 14491-14495, https://doi.org/10.1002/ange.201707965
[95] Surface Chemistry of Methanol on Different ZnO Surfaces Studied by Vibrational Spectroscopy
L. Jin, Y. Wang
Phys. Chem. Chem. Phys. 2017, 19, 12992-13001, https://doi.org/10.1039/C7CP01715D
[94] IR Spectroscopic Investigations of Chemical and Photochemical Reactions on Metal Oxides: Bridging the Materials Gap
Y. Wang, C. Wöll
Chem. Soc. Rev. 2017, 47, 1875-1932, https://doi.org/10.1039/C6CS00914J
[93a] Surface Faceting and Reconstruction of Ceria Nanoparticles
C. W. Yang, X. Yu, S. Heissler, A. Nefedov, S. Colussi, J. Llorca, A. Trovarelli, Y. Wang, C. Wöll
Angew. Chem. Int. Ed. 2017, 56, 375-379, https://doi.org/10.1002/anie.201609179
[93b] Oberflächenfacettierung und Rekonstruktion von Ceroxid-Nanopartikeln
C. W. Yang, X. Yu, S. Heissler, A. Nefedov, S. Colussi, J. Llorca, A. Trovarelli, Y. Wang, C. Wöll
Angew. Chem. 2017, 129, 382-387, https://doi.org/10.1002/ange.201609179
[92] Encapsulation of bimetallic metal nanoparticles into robust Zr-based metal-organic frameworks: Evaluation of the catalytic potential for size-selective hydrogenation
C. Rösler, S. Dissegna, V. L. Rechac, M. Kauer, P. Guo, S. Turner, K. Ollegott, H. Kobayashi, T. Yamamoto, D. Peeters, Y. Wang, S. Matsumura, G. Van Tendeloo, H. Kitagawa, M. Muhler, F. X.Llabrés i Xamena, R. A. Fischer
Chem. Eur. J. 2017, 23, 3583-3594, https://doi.org/10.1002/chem.201603984
[91] Impact of synthesis parameters on the formation of defects in HKUST-1
W. Zhang, M. Kauer, P. Guo, S. Kunze, S. Cwik, M. Muhler, Y. Wang, K. Epp, G. Kieslich R. A. Fischer
Eur. J. Inorg. Chem. 2017, 5, 925-931, https://doi.org/10.1002/ejic.201601239
[90] IR-spectroscopy of CO adsorption on mixed-terminated ZnO surfaces
M. Buchholz, X. J. Yu, C. W. Yang, S. Heissler, A. Nefedov, Y. Wang, C. Wöll
Surf. Sci. 2016, 652, 247-252, http://doi.org/10.1016/j.susc.2015.12.029
[89] Simultaneously introduction of various palladium active sites into MOF via one-pot synthesis: Pd@[Cu3-xPdx(BTC)2]n
W. Zhang, Z. Chen, M. Al-Naji, P. Guo, S. Cwik, O.Halbherr, Y. Wang, M. Muhler, N. Wilde, R. Glaser, R. A Fischer
Dalton Trans. 2016, 45,14883, https://doi.org/10.1039/C6DT02893D
[88] Interaction of formaldehyde with the rutile TiO2(110) surface: A combined experimental and theoretical study
X. J. Yu, Z. R. Zhang, C. W. Yang, F. Bebensee, S. Heissler, A. Nefedov, M. R. Tang, Q. F. Ge, L. Chen, B. D. Kay, Z. Dohnalek, Y. Wang, C. Wöll
J. Phys. Chem. C 2016, 120, 12626-12636, https://doi.org/10.1021/acs.jpcc.6b03689
[87] Ruthenium metal–organic frameworks with different defect types: Influence on porosity, sorption, and catalytic properties
W. Zhang, M. Kauer, O. Halbherr, K. Epp, P. Guo, M. I. Gonzalez, D. J. Xiao, C. Wiktor, F. X. LIabres i Xamena, C.Wöll, Y. Wang, M.Muhler, R. A. Fischer
Chem. Eur. J. 2016, 22, 14297-14307, https://doi.org/10.1002/chem.201602641
[86] Interaction of carboxylic acids with rutile TiO2(110): IR-investigations of terephthalic and benzoic acid adsorbed on a single crystal substrate
M. Buchholz, M. C. Xu, H. Noei, P. Weidler, A. Nefedov, K. Fink, Y. Wang, C. Wöll
Surf. Sci. 643, 2016, 117-123, http://doi.org/10.1016/j.susc.2015.12.029
[85] A multitechnique study of CO adsorption on the TiO2 anatase (101) surface,
M. Setvin, M. Buchholz, W. Y. Hou, C. Zhang, B. Stoger, J. Hulva, T. Simschitz, X. Shi, J. Pavelec, G. S. Parkinson, M. C. Xu, Y. Wang, M. Schmid, C. Wöll, A. Selloni, U. Diebold
J. Phys. Chem. C 2015, 119, 21044-21052, http://doi.org/10.1021/acs.jpcc.5b07999
[84] The interaction of formic acid with zinc oxide: A combined experimental and theoretical study on single crystal and powder samples
M. Buchholz, Q. Li, H. Noei, A. Nefedov, Y. Wang, M. Muhler, K. Fink, C. Wöll
Top. Catal. 2015, 58, 174-183, http://doi.org/10.1007/s11244-014-0356-7
[83] Ionic Liquid-Assisted Sonochemical Preparation of CeO2 Nanoparticles for CO Oxidation
T. Alammar, H. Noei, Y. Wang, W. Grünert, A.-V. Mudring
ACS Sustainable Chem. Eng. 2015, 3, 42-54, https://doi.org/10.1021/sc500387k
[82] Structural complexity in MOFs: Simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers
Z. Fang, J. P. Dürholt, M. Kauer, W. Zhang, O. Kozachuk , B. Albada, N. Metzler-Nolte, M. Muhler, Y. Wang, R. Schmid, R. A. Fischer
J. Am. Chem. Soc. 2014, 136, 9627-9636, https://doi.org/10.1021/ja503218j
[81a] Multifunctional, defect engineered Ru-MOFs: Sorption and catalytic properties
O. Kozachuk, I. Luz, F. X. Llabres i Xamena, H. Noei, M. Kauer, E. D. Bloch, B. Marler, Y. Wang, M. Muhler, R. A. Fischer
Angew. Chem. Int. Ed. 2014, 53, 7058-7062, https://doi.org/10.1002/anie.201311128
[81b] Multifunktionale, defect-manipulierte Ru-MOFs: Sorption und katalytische Eigenschaften
O. Kozachuk, I. Luz, F. X. Llabres i Xamena, H. Noei, M. Kauer, E. D. Bloch, B. Marler, Y. Wang, M. Muhler, R. A. Fischer
Angew. Chem. 2014, 126, 7178-7182, https://doi.org/10.1002/ange.201311128
[80] NO adsorption and reaction on single crystal rutile TiO2(110) surfaces studied using UHV-FTIRS
M. C. Xu, Y. Wang, S. J. Hu, R. B. Xu, Y. J. Cao, S. S. Yan
Phys. Chem. Chem. Phys. 2014, 16, 14682-14687, https://doi.org/10.1039/C4CP01978D
[79a] Low-temperature CO oxidation with TiO2-supported Au3+ ions
W. Grünert, D. Großmann, H. Noei, M. M. Pohl, I. Sinev, A. De Toni, Y. Wang, M. Muhler
Angew. Chem. Int. Ed. 2014, 53, 3245, http://doi.org/10.1002/anie.201308206
[79b] Tieftemperatur-CO-Oxidation mit Au3+-Ionen auf TiO2
W. Grünert, D. Großmann, H. Noei, M. M. Pohl, I. Sinev, A. De Toni, Y. Wang, M. Muhler
Angew. Chem. 2014, 126, 3309 (2014), http://doi.org/10.1002/ange.201308206
[78] How different characterization techniques elucidate the nature of the gold species in a polycrystalline Au/TiO2 catalyst
W. Grünert, D. Grossmann, H. Noei, M. M. Pohl, I. Sinev, A. De Toni, Y. Wang, M. Muhler
Chem. Ing. Techn. 2014, 86, 1883-1889, https://doi.org/10.1002/cite.201400039
[77] Synergetic effect between Cu0 and Cu+ in the Cu-Cr catalysts for hydrogenolysis of glycerol
Z. Xiao, X. Wang, J. Xiu, Y. Wang, C. T. Williams, C. Liang
Catal. Today 2014, 234, 200-207, https://doi.org/10.1016/j.cattod.2014.02.025
[76] Surface-modified TiO2 photocatalysts prepared by a photosynthetic route: Mechanism, enhancement, and limits
S. Neubert, A. Ramakrishnan, J. Strunk, H. Shi, B. Mei, L. Wang, M. Bledowski, D. A. Guschin, M. Kauer, Y. Wang, M. Muhler, R. Beranek
ChemPlusChem. 2014, 79, 163-170, https://doi.org/10.1002/cplu.201300277
[75] Vibrational spectroscopic studies on pure and metal-covered metal oxide surfaces
H. Noei, L. Jin, H. Qiu, M. Xu, Y. Gao, M. Kauer, Ch. Wöll, M. Muhler, Y. Wang
Phys. Status Solidi B 2013, 250, 1204-1221, https://doi.org/10.1002/pssb.201248534
[74] Coverage-induced hydrogen transfer on ZnO surfaces: from ideal to real systems
H. Noei, F. Gallino, L. Jin, J. Zhao, C. Di Valentin, Y. Wang
Angew. Chem. Int. Ed. 2013, 52, 1977, http://doi.org/10.1002/anie.201207566
[73] Molecular understanding of reactivity and selectivity for methanol oxidation at the Au/TiO2 interface
M. Farnesi Camellone, J. Zhao, L. Jin, Y. Wang, M. Muhler, D. Marx
Angew. Chem. Int. Ed. 2013, 52, 5780, http://doi.org/10.1002/anie.201301868
[72a] Chemical activity of thin oxide layers: strong interactions with the support yield a new thin-film phase of ZnO
V. Schott, H. Oberhofer, A. Birkner, M. Xu, Y. Wang, M. Muhler, K. Reuter, Ch. Wöll
Angew. Chem. Int. Ed. 2013, 52, 11925-11929, http://doi.org/10.1002/anie.201302315
[72b] Chemische Aktivität von dünnen Oxidschichten: Starke Träger-Wechselwirkungen ergeben eine neue ZnO-Dünnfilmphase
V. Schott, H. Oberhofer, A. Birkner, M. Xu, Y. Wang, M. Muhler, K. Reuter, Ch. Wöll
Angew. Chem. 2013, 125, 12143-12147, http://doi.org/10.1002/ange.201302315
[71] Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide
M. Ma, H. Noei, B. Mienert, J. Niesel, E. Bill, M. Muhler, R. A. Fischer, Y. Wang, U. Schatzschneider, N. Metzler-Nolte
Chem. Eur. J. 2013, 19, 6785-6790, http://doi.org/10.1002/chem.201201743
[70] CO adsorption on a mixed-valence ruthenium metal-organic framework studied by UHV-FTIR spectroscopy and DFT calculations
H. Noei, O. Kozachuk, S. Amirjalayer, S. Bureekaew, M. Kauer, R. Schmid, B. Marler, M. Muhler, R. A. Fischer, Y. Wang
J. Phys. Chem. C 2013, 117, 5658-5666, https://doi.org/10.1021/jp3056366
[69] Mild yet phase-selective preparation of TiO2 nanoparticles from ionic liquids: A critical study
T. Alammar, H. Noei, Y. Wang, A.-V. Mudring
Nanoscale 2013, 5, 8045-8050, https://doi.org/10.1039/C3NR00824J
[68] A combined experimental and computational study the adsorption and reactions of NO on rutile TiO2
D. Stodt, H. Noei, C. Hättig, Y. Wang
Phys. Chem. Chem. Phys. 2013, 15, 466-472, https://doi.org/10.1039/C2CP42653F
[67a] The surface science approach for understanding reactions on oxide powders: The importance of IR spectroscopy
M. Xu, H. Noei, K. Kink, M. Muhler, Y. Wang, C. Wöll
Angew. Chem. Int. Ed. 2012, 51, 4731-4734, https://doi.org/10.1002/anie.201200585
[67b] Anwendung des oberflächenwissenschaftlichen Ansatzes auf Reaktionen an Oxidpulvern:
Die Bedeutung der IR-Spektroskopie
M. Xu, H. Noei, K. Kink, M. Muhler, Y. Wang, C. Wöll
Angew. Chem. 2012, 124, 4810-4813, https://doi.org/10.1002/ange.201200585
[66] Probing the mechanism of low-temperature CO oxidation on Au/ZnO catalysts by vibrational spectroscopy
H. Noei, A. Birkner, K. Merz, M. Muhler, Y. Wang
J. Phys. Chem. C 2012, 116, 11181-11188, https://doi.org/10.1021/jp302723r
[65] Low-temperature CO oxidation over Cu-based metal-organic frameworks monitored by using FTIR spectroscopy
H. Noei, S. Amirjalayer, M. Muller, X. Zhang, R. Schmid, M. Muhler, R. A. Fischer, Y. Wang
ChemCatChem. 2012, 4, 755, https://doi.org/10.1002/cctc.201200164
[64] Dissociation of formic acid on anatase TiO2(101) probed by vibrational spectroscopy
M. Xu, H. Noei, M. Buchholz, M. Muhler, C. Wöll, Y. Wang
Catal. Today 2012, 182, 12-15, https://doi.org/10.1016/j.cattod.2011.08.045
[63] Defects in MOFs: A thorough characterization
P. St. Petkov, G. N. Vayssilov, J. Liu, O. Shekhah, Y. Wang, C. Wöll, T. Heine
ChemPhysChem. 2012, 14, 2025-2029, https://doi.org/10.1002/cphc.201200222
[62] On the complexation kinetics for metallization of organic layers: palladium onto a pyridine-terminated araliphatic thiol film.
M. I. Muglali, J. X. Liu, A. Baschir, D. Borissov, M. Xu, Y. Wang, C. Wöll, M. Rohwerder
Phys. Chem. Chem. Phys. 2012, 14, 4703-4712, https://doi.org/10.1039/C2CP40072C
[61] Rare-earth substituted HfO2 thin films grown by metalorganic chemical vapor deposition
A. Devi, S. Cwik, K. Xu, A.P. Milanov, H. Noei, Y. Wang, D. Barreca, J. Meijer, D. Rogalla, D. Kahn, R. Cross, H. Parala, S. Paul
Thin Solid Films 2012, 520, 4512−4517, https://doi.org/10.1016/j.tsf.2011.10.141
[60] Activation of carbon dioxide on ZnO nanoparticles studied by vibrational spectroscopy
H. Noei, C. Wöll, M. Muhler, Y. Wang
J. Phys. Chem. C 2012, 115, 908, https://doi.org/10.1021/jp102751t
[59] Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy
M. Xu, Y.K. Gao, E. M. Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, C. Wöll
Phys. Rev. Lett. 2011, 106, 138302, https://doi.org/10.1103/PhysRevLett.106.138302
[58] ZnO@ZIF-8: stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption
D. Esken, H. Noei, Y. Wang, C. Wiktor, S. Turner, G. van Tendeloo, R. A. Fischer
J. Mater. Chem. 2011, 21, 5907-5915, https://doi.org/10.1039/C1JM10091B
[57] The interaction of carbon monoxide with clean and surface-modified zinc oxide nanoparticles: A UHV-FTIRS study
H. Noei, C. Wöll, M. Muhler, Y. Wang
Appl. Catal. A 2011, 391, 31, https://doi.org/10.1016/j.apcata.2010.05.015
[56] Au@MOF-5 and Au/MO(x)@MOF-5 (M=Zn, Ti; x=1,2): Preparation and microstructural characterization
M. Muller, S. Turner, OI. Lebedev, Y. Wang, G. van Tendeloo, R. A. Fischer
Eur. J. Inorg. Chem. 2011, 12, 1876-1887, https://doi.org/10.1002/ejic.201001297
[55] Shallow donor states induced by in-diffused Cu in ZnO: A combined HREELS and hybrid DFT study
H. Qiu, F. Gallino, C. Di Valentin, Y. Wang
Phys. Rev. Lett. 2011, 106, 066401, https://dx.doi.org/10.1103/PhysRevLett.106.066401
[54] Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces
O. Kozachuk, K. Yusenko, H. Noei, Y. Wang, S. Walleck, T. Glaser, R. A. Fischer
Chem. Commun. 2011, 47, 8509-8511, https://doi.org/10.1039/C1CC11107H
[53] Use of confocal flurescence microscopy to compare different methods of modifying metal-organic framework (MOF) crystals with dyes
M.Y. Ma, A. Gross, D. Zacher, A. Pinto, H. Noei, Y. Wang, R. A. Fischer, N. Metzler Nolte
CrystEngComm. 2011, 13, 2828-2832, https://doi.org/10.1039/C0CE00416B
[52] Combined theoretical and experimental study on the adsorption of methanol on the ZnO(10-10) surface
J. Kiss, D. Langenberg, D. Silber, F. Traeger, L. Jin, H. Qiu, Y. Wang, B. Meyer, C. Wöll
J. Phys. Chem. A 2011, 115, 7180-7188, https://doi.org/10.1021/jp200146v
[51] Hydrogen loading of oxide powder particles: A transmission IR study for the case of zinc oxide
H. Noei, H. Qiu, Y. Wang, M. Muhler, C. Wöll
ChemPhysChem, 2010, 11, 3604-3607, https://doi.org/10.1002/cphc.201000312
[50] Comment on “Imaging of the hydrogen subsurface site in rutile TiO2”
M. Calatayud, X.- L. Yin, H. Qiu, Y. Wang, A. Birkner, C. Minot, C. Wöll
Phys. Rev. Lett. 2010, 104, 119603, http://dx.doi.org/10.1103/PhysRevLett.104.119603
[49] On the active state of stearate-based Cu colloids applied in methanol synthesis: structural changes driven by strong metal-support interactions
S. Schimpf, A. Rittermeier, X. Zhang, Z. Li, M. Spasova, M. W.E. van den Berg, M. Farle, Y. Wang, R. A. Fischer, M. Muhler
ChemCatChem. 2010, 2, 214-222, https://doi.org/10.1002/cctc.200900252
[48] Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reaction
C. Liang, L. Ding, C. Li, M. Pang, D. Su, W. Li, Y. Wang
Energy Environ. Sci. 2010, 3, 1121-1127, https://doi.org/10.1039/C001423K
[47] Monitoring electronic structure changes of TiO2(110) via sign reversal of adsorbate vibrational bands
M. Xu, Y. K. Gao, Y. Wang, C. Wöll
Phys. Chem. Chem. Phys. 2010, 12, 3649-3652, https://doi.org/10.1039/B926602J
[46] A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries
Y. Wang, A. Glenz, M. Muhler, C. Wöll
Rev. Sci. Instrum. 2009, 80, 113108, https://doi.org/10.1063/1.3257677
[45] Interaction of NO with the O-rich RuO2(110) Surface at 300 K
K. Jacobi, Y. Wang,
Surf. Sci. 2009, 603, 1600-1604 (special issue in honor of Gerhard Ertl’s Nobel Prize), https://doi.org/10.1016/j.susc.2008.09.047
[44] Chemical reactions on metal oxide surfaces investigated by vibrational spectroscopy
Y. Wang, C. Wöll
Surf. Sci. 2009, 603, 1589-1599 (special issue in honor of Gerhard Ertl’s Nobel Prize), https://doi.org/10.1016/j.susc.2008.09.046
[43] Formation of weakly bound, ordered adlayers of CO on rutile TiO2(110): A combined experimental and theoretical study
M. Kunat, F. Traeger, H. Qiu, Y. Wang, A. C. Van Veen, Ch. Wöll, and P. Kowacik, B. Meyer, C. Hättig, D. Marx
J. Chem. Phys. 2009, 130, 144703, https://doi.org/10.1063/1.3098318
[42] Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction
S. Kundu, T.C. Nagaiah, W. Xia, Y. Wang, S. Van Dommele, J.H. Bitter, M. Santa, G. Grundmeier, M. Bron, W. Schuhmann, M. Muhler
J. Phys. Chem. C 2009, 113, 14302-14310, https://doi.org/10.1021/jp811320d
[41] Synthesis and catalytic performance of Pd nanoparticle/functionalized CNF composites by a two-step chemical vapor deposition of Pd(allyl)(Cp) precursor
C. Liang, W. Xia, M. van den Berg, Y. Wang, H. Soltani-Ahmadi, O. Schlüter, R. A. Fischer, M. Muhler
Chem. Mater. 2009, 21, 2360-2366, https://doi.org/10.1021/cm8031225
[40] Nanometer-sized titania hosted inside MOF-5
M. Müller, X. Zhang, Y. Wang, R. A. Fischer
Chem. Commun. 2009, 119-121, https://doi.org/10.1039/B814241F
[39] The Formation of colloidal copper nanoparticles stabilized by zinc stearate: One-pot single-step synthesis and characterization of the core-shell particles
A. Rittermeier, S. Miao, M. K. Schröter, X. Zhang, M. W. E. van den Berg, S. Kundu, Y. Wang, S. Schimpf, R. A. Fischer, M. Muhler
Phys. Chem. Chem. Phys. 2009, 11, 8358, https://doi.org/10.1039/B908034A
[38] Ionization energies of shallow donor states in ZnO created by reversible formation and depletion of H interstitials
H. Qiu, B. Meyer, Y. Wang, C. Wöll
Phys. Rev. Lett. 2008, 101, 236401, https://doi.org/10.1103/PhysRevLett.101.236401
[37] Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/TPR study
S. Kundu, Y. Wang, W. Xia, M. Muhler
J. Phys. Chem. C 2008, 112, 16869-16878, https://doi.org/10.1021/jp804413a
[36] The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy
H. Noei, H. Qiu, Y. Wang, E. Löffler, Ch. Wöll, M. Muhler
Phys. Chem. Chem. Phys. 2008, 10, 7092-7097, https://doi.org/10.1039/B811029H
[35] Direct monitoring of photo-induced reactions on well-defined metal oxide surfaces using vibrational spectroscopy
C. Rohmann, Y. Wang, M. Muhler, H. Idriss, C. Wöll
Chem. Phys. Lett. 2008, 460, 10-12, https://doi.org/10.1016/j.cplett.2008.05.056
[34] Carbon-carbon bond formation on model titanium oxide surfaces: Identification of surface reaction intermediates by HREELS
H. Qiu, H. Idriss, Y. Wang, C. Wöll
J. Phys. Chem. C 2008, 112, 9828-9834, https://doi.org/10.1021/jp801327b
[33] High-resolution electron energy loss spectroscopy on perfect and defective oxide Surfaces
Y. Wang
Z. Phys. Chem. 2008, 222, 927-964 (review article), https://doi.org/10.1524/zpch.2008.6016
[32] Diffusion versus desorption: Complex behavior of H atoms on an oxide surface
X.-L. Yin, M. Calatayud, H. Qiu, Y. Wang, A. Birkner, C. Minot, and Ch. Wöll
ChemPhysChem. 2008, 9, 253-256, https://doi.org/10.1002/cphc.200700612
[31] Chemical vapor synthesis of secondary carbon nanotubes catalysed by iron nanoparticles electrodeposited on primary carbon nanotubes
W. Xia, X. Chen, S. Kundu, X. Wang, G. Grundmeier, Y. Wang, M. Bron, W. Schuhmann, M. Muhler
Surface & Coatings Technology 2007, 201, 9232-9237, https://doi.org/10.1016/j.surfcoat.2007.05.031
[30a] Die Steuerung der Reaktivität von Oxidoberflächen durch ladungsakzeptierende Adsorbate
Y. Wang, X. Xia, A. Urban, H. Qiu, J. Strunk, B. Meyer, M. Muhler, C. Wöll
Angew. Chem. 2007,119, 7456-7459, https://doi.org/10.1002/ange.200702815
[30a] Tuning the reactivity of oxide surfaces by charge-accepting coadsorbates
Y. Wang, X. Xia, A. Urban, H. Qiu, J. Strunk, B. Meyer, M. Muhler, C. Wöll
Angew. Chem. Int. Ed. 2007, 46, 7315-7318, https://doi.org/10.1002/anie.200702815
[30b] Die Steuerung der Reaktivität von Oxidoberflächen durch ladungsakzeptierende Adsorbate
Y. Wang, X. Xia, A. Urban, H. Qiu, J. Strunk, B. Meyer, M. Muhler, C. Wöll
Angew. Chem. 2007,119, 7456-7459, https://doi.org/10.1002/ange.200702815
[29] Controlled etching of carbon nanotubes by iron-catalyzed steam gasification
W. Xia, V. Hagen, S. Kundu, Y. Wang, Ch. Somsen, G. Eggeler, G. Sun, G. Grundmeier, M. Stratmann, M. Muhler
Adv. Mater. 2007, 19, 3648-3652, https://doi.org/10.1002/adma.200700763
[28a] CO2-Aktivierung durch ZnO unter Bildung eines ungewöhnlichen dreizähnigen Oberflächencarbonats
Y. Wang, R. Kováik, B. Meyer, K. Kotsis, D. Stodt, V. Staemmler, H. Qiu, F. Traeger, D. Langenberg, M. Muhler, C. Wöll
Angew. Chem. 2007, 119, 5722-5725, https://doi.org/10.1002/ange.200700564
[28a] CO2 activation by ZnO via formation of an unusual tridentate surface carbonate
Y. Wang, R. Kováik, B. Meyer, K. Kotsis, D. Stodt, V. Staemmler, H. Qiu, F. Traeger, D. Langenberg, M. Muhler, C. Wöll
Angew. Chem. Int. Ed. 2007, 46, 5624-5627, https://doi.org/10.1002/ange.200700564
[28b] CO2-Aktivierung durch ZnO unter Bildung eines ungewöhnlichen dreizähnigen Oberflächencarbonats
Y. Wang, R. Kováik, B. Meyer, K. Kotsis, D. Stodt, V. Staemmler, H. Qiu, F. Traeger, D. Langenberg, M. Muhler, C. Wöll
Angew. Chem. 2007, 119, 5722-5725, https://doi.org/10.1002/ange.200700564
[27] The synthesis of ZrO2/SiO2 nanocomposites by the two-step CVD of a volatile halogen-free Zr alkoxide in a fluidized-bed reactor
W. Xia, Y. Wang, V. Hagen, A. Heel, G. Kasper, U. Patil, A. Devi, M. Muhler
Chem. Vap. Deposition 2007, 13, 37-41, https://doi.org/10.1002/cvde.200606533
[26] Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption
W. Xia, Y. Wang, R. Bergsträer, S. Kundu, and M. Muhler
Appl. Surf. Sci. 2007, 254, 247-250, https://doi.org/10.1016/j.apsusc.2007.07.120
[25] Interaction of hydrogen with RuO2(110) surfaces: Activity differences between various oxygen species
K. Jacobi, Y. Wang, G. Ertl
J. Phys. Chem. B 2006, 110, 6115-6122, https://doi.org/10.1021/jp056341m
[24] Reply to “Comment on ‘Interaction of hydrogen with RuO2(110) surfaces: Activity differences between various oxygen species’”
K. Jacobi, Y. Wang, G. Ertl
J. Phys. Chem. B 2006, 110, 22948-22949, https://doi.org/10.1021/jp064357m
[23] Spectroscopic evidence for the partial dissociation of H2O on ZnO(10-10)
Y. Wang, M. Muhler, C. Wöll
Phys. Chem. Chem. Phys. 2006, 8, 1521-1524, https://doi.org/10.1039/B515489H
[22] Chemical vapor deposition and synthesis on carbon nanofibers: sintering of ferrocene-ferrocene-derived supported iron nanoparticles and the catalytic growth of secondary carbon nanofibers
W. Xia, D. Su, A. Birkner, L. Ruppel, Y. Wang, Ch. Wöll, J. Qian, Ch. Liang G. Marginean, W. Brandl, M. Muhler
Chem. Mater. 2005, 17, 5737-5742, https://doi.org/10.1021/cm051623k
[21] Hydrogen induced metallicity on the ZnO(10-10) surface
Y. Wang, B. Meyer, X. Yin, M. Kunat, D. Langenberg, F. Traeger, A. Birkner, C. Wöll
Phys. Rev. Lett. 2005, 95, 266104, https://doi.org/10.1103/PhysRevLett.95.266104
[20] Adsorption of methane and ethane on RuO2(110) surfaces
U. Erlekam, U.A. Paulus, Y. Wang, H. P. Bonzel, K. Jacobi, G. Ertl
Z. Phys. Chem. 2005, 219, 891, https://doi.org/10.1524/zpch.219.7.891.67086
[19] Catalytic oxidation of ammonia on RuO2(110) surfaces: Mechanism and selectivity
Y. Wang, K. Jacobi, W. –D. Schöne, G. Ertl
J. Phys. Chem. B 2005, 109, 7883-7893, https://doi.org/10.1021/jp045735v
[18] Adsorption and interaction of ethylene on RuO2(110) surfaces
U.A. Paulus, Y. Wang, H.P. Bonzel, K. Jacobi, G. Ertl
J. Phys. Chem. B 2005, 109, 2139-2148, https://doi.org/10.1021/jp049080+
[17] Adsorption and reaction of ammonia on the Ru (11-20) surface
Y. Wang, K. Jacobi
J. Phys. Chem. B 2004, 108, 14726, https://doi.org/10.1021/jp049496n
[16] Inhibition of CO oxidation on RuO2(110) by adsorbed H2O molecules
U.A. Paulus, Y. Wang, S. H. Kim, P. Geng, J. Wintterlin, K. Jacobi, G. Ertl
J. Chem. Phys. 2004, 121, 11301, https://doi.org/10.1063/1.1812745
[15] Adsorption of ethylene on stoichiometric RuO2(110)
U.A. Paulus, Y. Wang, H.P. Bonzel, K. Jacobi, G. Ertl
Surf. Sci. 2004, 566, 989-994, https://doi.org/10.1016/j.susc.2004.06.041
[14] Interaction of NO with the stoichiometric RuO2(110) surface
Y. Wang, K. Jacobi, G. Ertl
J. Phys. Chem. B 2003, 107, 13918-13924, https://doi.org/10.1021/jp0308108
[13] CO adsorption on the reduced RuO2(110) surface
U. A. Paulus, Y. Wang, K. Jacobi, G. Ertl
Surf. Sci. 2003, 547, 349-354, https://doi.org/10.1016/j.susc.2003.09.050
[12] Interaction of CO with the stoichiometric RuO2(110) surface
S. H. Kim, U. A. Paulus, Y. Wang, J. Wintterlin, K. Jacobi, G. Ertl
J. Chem. Phys. 2003, 119, 9729-9736. https://doi.org/10.1063/1.1614205
[11] Vibrational states of hydrogen monolayer on the Pt (111) surface
S.C. Badescu, K. Jacobi, Y. Wang, K. Bedürftig, G. Ertl, P. Salo, T. Ala-Nissila, S. C. Ying
Phys. Rev. B 2003, 68, 205401, https://doi.org/10.1103/PhysRevB.68.205401
[10] Vibrational characterization of NH and NH2 reaction intermediates on the Ru(11-20) surface
Y. Wang, K. Jacobi
Surf. Sci. 2002, 513, 83-92, https://doi.org/10.1016/S0039-6028(02)01391-2
[9] Carbonate formation on the O-enriched RuO2(110) surface
A. Lafosse, Y. Wang, K. Jacobi
J. Chem. Phys. 2002, 117, 2823, https://doi.org/10.1063/1.1490339
[8] Stepwise dehydrogenation of NH3 at the Ru(11-20) surface
Y. Wang, A. Lafosse, K. Jacobi
Surf. Sci. 2002, 507, 773-777, https://doi.org/10.1016/S0039-6028(02)01351-1
[7] Energetics and vibrational states for hydrogen on Pt (111)
S. C. Badescu, P. Salo, T. Ala-Nissila, S. C. Ying, K. Jacobi, Y. Wang, K. Bedürftig, G. Ertl
Phys. Rev. Lett. 2002, 88, 136101, https://doi.org/10.1103/PhysRevLett.88.136101
[6] Adsorption and reaction of CO2 on the RuO2(110) surface
Y. Wang, A. Lafosse, K. Jacobi
J. Phys. Chem. B 2002, 106, 5476-5482, https://doi.org/10.1021/jp025619x
[5] From monomers to ice – new vibrational characteristics of H2O adsorbed on Pt (111)
K. Jacobi, K. Bedürftig, Y. Wang, G. Ertl
Surf. Sci. 2001, 472, 9-20, https://doi.org/10.1016/S0039-6028(00)00932-8
[4] The molecular adsorption of CO on the Ru(11-20) Surface
J. Wang, Y. Wang, K. Jacobi,
Surf. Sci. 2001, 482-485, 153-159, https://doi.org/10.1016/S0039-6028(01)00746-4
[3] Dissociation of CO on the Ru (11-20) surface
J. Wang, Y. Wang, K. Jacobi
Surf. Sci. 2001, 488, 83-89, https://doi.org/10.1016/S0039-6028(01)01108-6
[2] Adsorption and thermal dehydrogenation of ammonia on Ru(11-21)
K. Jacobi, Y. Wang, C.Y. Fan, H. Dietrich
J. Chem. Phys. 2001, 115, 4306, https://doi.org/10.1063/1.1390523
[1] Vibrational and structural properties of OH adsorbed on Pt(111)
K. Bedürftig, S. Völkening, Y. Wang, J. Wintterlin, K. Jacobi, G. Ertl
J. Chem. Phys. 1999, 111, 11147-11154 https://doi.org/10.1063/1.480472