UHV-IR/XPS
The new state-of-the-art ultrahigh vacuum system UHV-IR/XPS made by PREVAC in IFG is equipped with best surface science techniques. The UHV- apparatus exists of a distribution chamber, two preparation chambers, an analysis chamber, an infrared (IR) – chamber, two load-locks and a magazine.
The preparation chambers give the opportunity to sputter, for cleaning the sample, to heat (max. 1200 K or 2000 K stand-alone) and to cool the sample (max. 70 K) on one same sample holder. Molecules and metals can be evaporated on the surface and detected by LEED, Auger electron spectroscopy, and mass spectrometry. The desorption process can be traced by thermal desorption spectroscopy.
Powder as well as single crystals and other solid material can be investigated in the IR- and the analysis chamber. Heating to 1200 K and cooling with liquid nitrogen to 100 K is possible in every chamber. In the analysis chamber the sample can be prepared with sputtering and annealing, it is also possible to cool the sample.
The photoelectron spectroscopy techniques in the analysis chamber are giving information about the elemental composition of the surface (top 1–10 nm usually), the empirical formula of pure materials, chemical or electronic state of each element in the surface and uniformity of elemental composition across the top surface (or line profiling, mapping, and depth profiling with both sputtering and angle resolving in tilting or non-tilting specimen modes).
In the IR chamber samples could be measured in transmission or reflection mode (Reflection Absorption Infrared Spectroscopy (RAIRS)). The Rapid Scan and Step Scan mode give also the opportunity to study the kinetics of a reaction. The samples could be heated or cooled down to 30 K and gases could be doses during the measurements. Photocatalytic experiments are planned for the IR chamber.
Our knowledge and expertise are available for all other institutes of KIT as well as external partners.
Equipment
- IR: Bruker Vertex 80v
- XPS/UPS/ARPES/AES: RG Scienta 4000
- LEED/AES
- TDS
- Effusion cells, evaporators
Titel | Autor | Quelle |
---|---|---|
CO adsorption on the calcite(10.4) surface: acombined experimental and theoretical study | Hafshejani, T.M. / Wang, W. / Heggemann, J. / Nefedov, A. / Heissler, S. / Wang, Y. / Rahe, P. / Thissen, P. / Wöll, C. (2020) |
Phys. Chem. Phys., 2020, DOI: 10.1039/d0cp02698k |
Cis-to-Trans Isomerization of Azobenzene Investigated by Using Thin Films of Metal-Organic Frameworks |
|
Phys. Chem. Chem. Phys., (2015), 17, 22721-22725 |
Doping-Induced Electron Transfer at Organic/Oxide Interfaces: Direct Evidence from Infrared Spectroscopy | Schöttner, L. / Erker, S. / Schlesinger, R. / Koch, N. / Nefedov, A. / Hofmann, O.T. / Wöll, C. (2020) |
J. Phys. Chem. C, 2020, 124, 8, 4511–4516, doi.org/10.1021/acs.jpcc.9b08768 |
Evidence for photogenerated intermediate hole polarons in ZnO | Sezen, H. / Shang, H. / Bebensee, F. / Yang, C. / Buchholz, M. / Nefedov, A. / Heissler, S. / Carbogno, C. / Scheffler, M. / Rinke, P. / Wöll, C. (2015) |
Nature Communications, 6, 6901(1-4), doi:10.1038/ncomms7901 |
IR-spectroscopy of CO adsorption on mixed-terminated ZnO surfaces | Buchholz, M. / Yu, X. / Yang, C. / Heißler, S. / Nefedov, A. / Wang, Y. / Wöll, C (2016) |
Surface Science, 2016, 652, 245-252 |
Interaction of Formaldehyde with the Rutile TiO2(110) Surface: A Combined Experimental and Theoretical Study | Yu, X. / Zhang, Z. / Yang, C. / Bebensee, F. / Heissler, S. / Nefedov, A. / Tang, M. / Ge, Q. / Chen, L. / Kay, B., D. / Dohnalek, Z. / Wang, Y. / Wöll, C. (2016) |
J. Phys. Chem. C, 120, 12626-12636, DOI: 10.1021/acs.jpcc.6b03689 |
Interaction of Water Molecules with the α-Fe2O3(0001) Surface: A Combined Experimental and Computational Study | Schöttner, L. / Ovcharenko, R. / Nefedov, A. / Voloshina, E. / Wang, Y. / Sauer, J. / Wöll, C. (2019) |
J. Phys. Chem. C, 2019, 123, 13, 8324-8335
|
Interaction of carboxylic acids with rutile TiO2(110): IR-investigations of terephthalic and benzoic acid adsorbed on a single crystal substrate | Buchholz, M. / Xu, M. / Heshmat, N. / Weidler, P. / Nefedov, A. / Finke, A. / Wang, Y. / Wöll, C. (2016) |
doi:10.1016/j.susc.2015.08.006 |
Interplay of Electronic and Steric Effects to Yield Low‐Temperature CO Oxidation at Metal Single Sites in Defect‐Engineered HKUST‐1 | Wang, W. / Sharapa, D.I. / Chandresh, A. / Nefedov, A. / Heißler, S. / Heinke, L. / Studt, F. / Wang, Y. / Wöll, C. (2020) |
Angewandte Chemie International Edition, 2020, 59, 26, 10514-10518 |
Methanol adsorption on monocrystalline ceria surfaces | Yang, C. / Bebensee, F. / Nefedov, A. / Wöll, C. / Kropp, T. / Komissarov, L. / Penschke, C. / Moerer, R. / Paier, J. / Sauer, J. (2016) |
Journal of Catalysis, (2016), 336, 116–125 |
Structural Evolution of a-Fe2O3(0001) Surfaces Under Reduction Conditions Monitored by Infrared Spectroscopy | Schöttner, L. / Nefedov, A. / Yang, C. / Heissler, S. / Wang, Y. / Wöll, C. (2019) |
Front. Chem., 2019, 7, 451, doi: 10.3389/fchem.2019.00451 |
Structure of the catalytically active copper–ceria interfacial perimeter | Chen, A. / Yu, X. / Zhou, Y. / Miao, S. / Li, Y. / Kuld, S. / Sehested, J. / Liu, J. / Aoki, T. / Hong, S. / Camellone, M. F. / Fabris, S. / Ning, J. / Jin, C. / Yang, C. / Nefedov, A. / Wöll, C. / Wang, Y. / Shen, W. (2019) |
Nature Catalysis 2, 2019, 334–341 |
The Interaction of Formic Acid with Zinc Oxide: A Combined Experimental and Theoretical Study on Single Crystal and Powder Samples | Maria Buchholz, M. / Li, Q. / Noei, H. / Nefedov, A. / Wang, Y. / Muhler, M. / Fink, K. / Wöll, C. (2015) |
Topics in Catalysis, (2015), 58, 2, 174-183 |